For a certain organ pipe three successive resonance frequencies are observed at $425\, Hz,595 \,Hz$ and $765 \,Hz$ respectively. If the speed of sound in air is $340 \,m/s$,  then the length of the pipe is ..... $m$

  • A

    $2$

  • B

    $0.4$

  • C

    $1$

  • D

    $0.2$

Similar Questions

An organ pipe $P_1$ closed at one end vibrating in its first overtone. Another pipe $P_2$  open at both ends is vibrating in its third overtone. They are in a resonance with a  given tuning fork. The ratio of the length of $P_1$ to that of $P_2$ is

A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ...... $Hz$

A wave travelling in the $-ve\,\,z-$ direction having displacement along $x-$ direction as $1\,m,$ wavelength $\pi\, m$ and frequency at $\frac {1}{\pi }\,H_Z$ is represented by

The displacement $y$ of a wave travelling in the $x-$ direction is given by $y = {10^{ - 4}}\sin \left( {600t - 2x+\frac{\pi }{3}} \right)$ metre, where $x$ is expressed in metres and $t$ in seconds. The speed of the wave in $ms^{-1}$, is

When a wave travels in a medium, the particle displacement is given by : $y = asin\, 2 \pi \,(bt -cx)$, where $a, b$ and $c$ are constants. The maximum particle velocity will  be twice the wave velocity if